11 research outputs found

    Explainable Misinformation Detection Across Multiple Social Media Platforms

    Full text link
    In this work, the integration of two machine learning approaches, namely domain adaptation and explainable AI, is proposed to address these two issues of generalized detection and explainability. Firstly the Domain Adversarial Neural Network (DANN) develops a generalized misinformation detector across multiple social media platforms DANN is employed to generate the classification results for test domains with relevant but unseen data. The DANN-based model, a traditional black-box model, cannot justify its outcome, i.e., the labels for the target domain. Hence a Local Interpretable Model-Agnostic Explanations (LIME) explainable AI model is applied to explain the outcome of the DANN mode. To demonstrate these two approaches and their integration for effective explainable generalized detection, COVID-19 misinformation is considered a case study. We experimented with two datasets, namely CoAID and MiSoVac, and compared results with and without DANN implementation. DANN significantly improves the accuracy measure F1 classification score and increases the accuracy and AUC performance. The results obtained show that the proposed framework performs well in the case of domain shift and can learn domain-invariant features while explaining the target labels with LIME implementation enabling trustworthy information processing and extraction to combat misinformation effectively.Comment: 28 pages,4 figure

    Ensemble Neurocomputing Based Oil Price Prediction

    No full text
    Abstract. In this paper, we investigated an ensemble neural network for the prediction of oil prices. Daily data from 1999 to 2012 were used to predict the West Taxes, Intermediate. Data were separated into four phases of training and testing using different percentages and obtained seven sub-datasets after implementing different attribute selection algorithms. We used three types of neural networks: Feed forward, Recurrent and Radial Basis Function networks. Finally a good ensemble neural network model is formulated by the weighted average method. Empirical results illustrated that the ensemble neural network outperformed other models

    Lie Recognition with Multi-Modal Spatial–Temporal State Transition Patterns Based on Hybrid Convolutional Neural Network–Bidirectional Long Short-Term Memory

    No full text
    Recognition of lying is a more complex cognitive process than truth-telling because of the presence of involuntary cognitive cues that are useful to lie recognition. Researchers have proposed different approaches in the literature to solve the problem of lie recognition from either handcrafted and/or automatic lie features during court trials and police interrogations. Unfortunately, due to the cognitive complexity and the lack of involuntary cues related to lying features, the performances of these approaches suffer and their generalization ability is limited. To improve performance, this study proposed state transition patterns based on hands, body motions, and eye blinking features from real-life court trial videos. Each video frame is represented according to a computed threshold value among neighboring pixels to extract spatial–temporal state transition patterns (STSTP) of the hand and face poses as involuntary cues using fully connected convolution neural network layers optimized with the weights of ResNet-152 learning. In addition, this study computed an eye aspect ratio model to obtain eye blinking features. These features were fused together as a single multi-modal STSTP feature model. The model was built using the enhanced calculated weight of bidirectional long short-term memory. The proposed approach was evaluated by comparing its performance with current state-of-the-art methods. It was found that the proposed approach improves the performance of detecting lies

    Automated Diagnosis for Colon Cancer Diseases Using Stacking Transformer Models and Explainable Artificial Intelligence

    No full text
    Colon cancer is the third most common cancer type worldwide in 2020, almost two million cases were diagnosed. As a result, providing new, highly accurate techniques in detecting colon cancer leads to early and successful treatment of this disease. This paper aims to propose a heterogenic stacking deep learning model to predict colon cancer. Stacking deep learning is integrated with pretrained convolutional neural network (CNN) models with a metalearner to enhance colon cancer prediction performance. The proposed model is compared with VGG16, InceptionV3, Resnet50, and DenseNet121 using different evaluation metrics. Furthermore, the proposed models are evaluated using the LC25000 and WCE binary and muticlassified colon cancer image datasets. The results show that the stacking models recorded the highest performance for the two datasets. For the LC25000 dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (100). For the WCE colon image dataset, the stacked model recorded the highest performance accuracy, recall, precision, and F1 score (98). Stacking-SVM achieved the highest performed compared to existing models (VGG16, InceptionV3, Resnet50, and DenseNet121) because it combines the output of multiple single models and trains and evaluates a metalearner using the output to produce better predictive results than any single model. Black-box deep learning models are represented using explainable AI (XAI)

    A Survey: To Govern, Protect, and Detect Security Principles on Internet of Medical Things (IoMT)

    No full text
    The integration of medical equipment into the Internet of Things (IoT) led to the introduction of Internet of Medical Things (IoMT). Variation of IoT devices have been equipped in medical facilities. These devices provided convenience to healthcare provider since they can continuously monitor their patients in real-time, while allowing them to have greater physical flexibility and mobility. However, users of healthcare services (such as patients and medical staff) often are less concerned about security issues associated with IoT. These alleviate existing problems and jeopardize the lives of their patients by making them susceptible to attacks. Furthermore, IoMT applications have direct access to healthcare services because it handles sensitive patient information. Therefore, it is extremely important to preserve and establish the security and privacy of IoMT. This further justifies the need to investigate and address the related issues. Despite existing literature on security and privacy mechanisms, the domain still requires more attention. Therefore, this paper aims to discuss the security and privacy principles, as well as challenges associated with IoMT. Besides, a comprehensive analysis of privacy and security solutions for IoMT is also presented. In addition, we introduced a novel taxonomy of IoMT security and privacy based on cyber security principles such as “govern,” “protect,” and “detect”. In conclusion, this paper provides a discussion on existing challenges and future direction for researchers

    Expert System and Decision Support System for Electrocardiogram Interpretation and Diagnosis: Review, Challenges and Research Directions

    No full text
    Electrocardiography (ECG) is one of the most widely used recordings in clinical medicine. ECG deals with the recording of electrical activity that is generated by the heart through the surface of the body. The electrical activity generated by the heart is measured using electrodes that are attached to the body surface. The use of ECG in the diagnosis and management of cardiovascular disease (CVD) has been in existence for over a decade, and research in this domain has recently attracted large attention. Along this line, an expert system (ES) and decision support system (DSS) have been developed for ECG interpretation and diagnosis. However, despite the availability of a lot of literature, access to recent and more comprehensive review papers on this subject is still a challenge. This paper presents a comprehensive review of the application of ES and DSS for ECG interpretation and diagnosis. Researchers have proposed a number of features and methods for ES and DSS development that can be used to monitor a patient’s health condition through ECG recordings. In this paper, a taxonomy of the features and methods for ECG interpretation and diagnosis were presented. The significance of the features and methods, as well as their limitations, were analyzed. This review further presents interesting theoretical concepts in this domain, as well as identifies challenges and open research issues on ES and DSS development for ECG interpretation and diagnosis that require substantial research effort. In conclusion, this paper identifies important future research areas with the purpose of advancing the development of ES and DSS for ECG interpretation and diagnosis

    Expert System and Decision Support System for Electrocardiogram Interpretation and Diagnosis: Review, Challenges and Research Directions

    No full text
    Electrocardiography (ECG) is one of the most widely used recordings in clinical medicine. ECG deals with the recording of electrical activity that is generated by the heart through the surface of the body. The electrical activity generated by the heart is measured using electrodes that are attached to the body surface. The use of ECG in the diagnosis and management of cardiovascular disease (CVD) has been in existence for over a decade, and research in this domain has recently attracted large attention. Along this line, an expert system (ES) and decision support system (DSS) have been developed for ECG interpretation and diagnosis. However, despite the availability of a lot of literature, access to recent and more comprehensive review papers on this subject is still a challenge. This paper presents a comprehensive review of the application of ES and DSS for ECG interpretation and diagnosis. Researchers have proposed a number of features and methods for ES and DSS development that can be used to monitor a patient’s health condition through ECG recordings. In this paper, a taxonomy of the features and methods for ECG interpretation and diagnosis were presented. The significance of the features and methods, as well as their limitations, were analyzed. This review further presents interesting theoretical concepts in this domain, as well as identifies challenges and open research issues on ES and DSS development for ECG interpretation and diagnosis that require substantial research effort. In conclusion, this paper identifies important future research areas with the purpose of advancing the development of ES and DSS for ECG interpretation and diagnosis

    Teaching and Learning Computer Science at Al Baha University, Saudi Arabia : Insights from a staff development course

    No full text
    In this special session we meet a set of projects in computer science and engineering education at a university in Saudi Arabia. They are the product of a pedagogical development course ran in collaboration with a Swedish university during the academic year 2013/2014. The projects reflect the local situation, with its possibilities and challenges, and suggest steps to take, in the local environment, to enhance education. As such it is a unique document that brings insights from computer science and engineering education into the international literature
    corecore